sábado, abril 20, 2024

Top 5

Más Noticias

Órganos fabricados con impresoras 3D más resistentes

El uso de las impresoras 3D en la Medicina apunta muy alto. Tanto que no sólo se piensa en ellas para diseñar implantes a la medida de cada paciente que sustituyan las prótesis estándar. Las expectativas van mucho más allá. Científicos de todo el mundo investigan esta vía con el fin de crear órganos que se puedan implantar en humanos. El gran reto consiste en lograr que dicho constructo se integre con éxito en la persona receptora. Ahora, un equipo de expertos del Instituto Wake Forest de Medicina Regenerativa de California (Estados Unidos), liderado por el reconocido Anthony Atala, pionero en esta materia, esboza un nuevo sistema capaz de conseguir este propósito.

El problema es que resulta realmente difícil que el órgano sintético que se pretende implantar tenga el tiempo suficiente como para vascularizar en el organismo de una persona. Así lo demuestran los contados trasplantes de este tipo que se han realizado hasta la fecha, cuando ya no hay más alternativa y siempre como procedimiento experimental. Fue muy sonado el caso de Hannah Warren, una niña de dos años que sufría una rara enfermedad (agnesia traqueal congénita) que le impedía alimentarse por la boca, hablar o respirar con normalidad, porque su tráquea no se había desarrollado. Fue la persona más joven del mundo en recibir un trasplante de tráquea bioartificial, a partir de fibras de plástico a las que se añadieron las células propias de la niña, extraídas de su médula ósea. Fue el 9 de abril de 2013 (el responsable de la intervención: Paolo Macchiarini, sobre el que ahora recaen serias dudas por la posible falsificación de datos en sus artículos científicos). Desgraciadamente, la pequeña falleció apenas tres meses después.

Con el fin de superar el escollo de la revascularización del órgano sintético en el organismo, Atala y su equipo han creado una tecnología de impresión basado en un sistema con una especie de microcanales donde van instaladas las células que se van a utilizar, asegurando así la permeabilidad de los nutrientes y el oxígeno, consiguiendo que éstas se mantengan vivas una vez se trasladen a la pieza sintética ya construida y que por lo tanto, puedan desarrollar un sistema de vasos sanguíneos. “Conseguimos mantenerlas vivas mientras se encuentran en el biorreactor. El problema es cuando las pasamos al órgano. Tienden a morir porque les falta nutrición”, explica José Becerra, investigador del Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (Ciber-bbn), catedrático de Biología Celular de la Universidad de Málaga y director del Centro Andaluz de Nanomedicina y Biotecnología (BIONAND).

Según desvela el artículo de Atala en la prestigiosa revista Nature Biotechnology, el nuevo sistema de microcanales favorece la formación de vasos sanguíneos rápidamente, “lo que podría facilitar que el órgano bioartificial se integre funcionalmente y con éxito en el individuo”, señala el experto español al comentar la investigación estadounidense.

Más leído